Matrix Completion from Power-Law Distributed Samples
نویسندگان
چکیده
The low-rank matrix completion problem is a fundamental problem with many important applications. Recently, [4],[13] and [5] obtained the first non-trivial theoretical results for the problem assuming that the observed entries are sampled uniformly at random. Unfortunately, most real-world datasets do not satisfy this assumption, but instead exhibit power-law distributed samples. In this paper, we propose a graph theoretic approach to matrix completion that solves the problem for more realistic sampling models. Our method is simpler to analyze than previous methods with the analysis reducing to computing the threshold for complete cascades in random graphs, a problem of independent interest. By analyzing the graph theoretic problem, we show that our method achieves exact recovery when the observed entries are sampled from the Chung-Lu-Vu model, which can generate power-law distributed graphs. We also hypothesize that our algorithm solves the matrix completion problem from an optimal number of entries for the popular preferential attachment model and provide strong empirical evidence for the claim. Furthermore, our method is easy to implement and is substantially faster than existing methods. We demonstrate the effectiveness of our method on random instances where the low-rank matrix is sampled according to the prevalent random graph models for complex networks and present promising preliminary results on the Netflix challenge dataset.
منابع مشابه
A Direct Matrix Inversion-Less Analysis for Distribution System Power Flow Considering Distributed Generation
This paper presents a new direct matrix inversion-less analysis for radial distribution systems (RDSs). The method can successfully deal with weakly meshed distribution systems. (WMDSs). Being easy to implement, direct methods (DMs) provide an excellent performance. Matrix inversion is the mean reason of divergence and low-efficiency in power flow algorithms. In this paper, the performance of t...
متن کاملGraph Matrix Completion in Presence of Outliers
Matrix completion problem has gathered a lot of attention in recent years. In the matrix completion problem, the goal is to recover a low-rank matrix from a subset of its entries. The graph matrix completion was introduced based on the fact that the relation between rows (or columns) of a matrix can be modeled as a graph structure. The graph matrix completion problem is formulated by adding the...
متن کاملBuckling Behaviors of Symmetric and Antisymmetric Functionally Graded Beams
The present study investigates buckling characteristics of both nonlinear symmetric power and sigmoid functionally graded (FG) beams. The volume fractions of metal and ceramic are assumed to be distributed through a beam thickness by the sigmoid-law distribution (S-FGM), and the symmetric power function (SP-FGM). These functions have smooth variation of properties across the boundary rather tha...
متن کاملAnomalously large critical regions in power-law random matrix ensembles.
We investigate numerically the power-law random matrix ensembles. Wave functions are fractal up to a characteristic length whose logarithm diverges asymmetrically with different exponents, 1 in the localized phase and 0.5 in the extended phase. The characteristic length is so anomalously large that for macroscopic samples there exists a finite critical region, in which this length is larger tha...
متن کاملThe relation between memory and power-law exponent
The inter-event time of many real systems are empirically found to be power-law distributed, and memory (the first-order autocorrelation), as a quantity ranging from -1 to +1, has been proposed to characterize the short-range correlation of time series. While series from real systems are usually found to be positively or negatively correlated, the memories for empirical power-law series are pre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009